PLD (Programmable Logic Device)

- Can be programmed by the users as per their requirement
- Large circuit is designed on a single chip
- Possible to implement a combinational or sequential circuit using the PLD
- Consist of array of NOT, AND and OR gates
- Any Boolean function can be represented by sum of the product form.

PLDs

Types of PLD

- PROM (Programmable read only memory)
- PLA (programmable logic array)
- PAL (Programmable array logic)
- GAL (Generic array logic)
- PEEL (Programmable Electrically Erasable Logic)
- CPLDs (Complex programmable logic device)
- FPGA (Field programmable gate array)

Programmable Array

Device	AND Array	OR Array	
ROM	Fixed	Programmable	
PLA	Programmable	Programmable	
PAL	Programmable Fixed		
GAL	Programmable	Fixed	

ROM as PLD

- Consider a ROM with m outputs (the address lines) and n inputs (the data lines).
- When used as a memory, the ROM contains words of *n* bits each

TYPES

- <u>PROMs</u> (programmable ROMs),
- <u>EPROMs</u> (<u>ultraviolet</u>-erasable PROMs)
- **<u>EEPROMs</u>** (electrically erasable PROMs)

Programmable ROM (PROM)

Address: m bits; data: n bits

ROM contains 2^N word of M bit each

The input bits decide the particular word that becomes available on output lines

- A ROM (Read Only Memory) has a fixed AND plane and a programmable OR plane
- Size of AND plane is 2^n where n = number of input pins
 - Has an AND gate for every possible minterm so that all input combinations access a different AND gate
- OR plane dictates function mapped by the ROM

4x4 ROM

▶ 2²x4 bit ROM has 4 addresses that are decoded

ROM Types

- Programmable PROM
 - Break links through current pulses
 - Write once, Read multiple times
- Erasable PROM (EPROM)
 - Program with ultraviolet light
 - Write multiple times, Read multiple times
- Electrically Erasable PROM (EEPROM)/ Flash Memory
 - Program with electrical signal
 - Write multiple times, Read multiple times

Combinational Circuit Implementation using PROM

10 11 12 F0 F1 F2

0	0	0	1	0	0
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	0	1	0

Programmable Logic Array (PLA)

- Use to implement circuits in SOP form
- The connections in the AND plane are programmable
- The connections in the OR plane are programmable

Gate Level Version of PLA

f1 = x1x2 + x1x3' + x1'x2'x3

f2 = x1x2+x1'x2'x3+x1x3

Customary Schematic of a PLA

Programmable Array Logic (PAL)

- Also used to implement circuits in SOP form
- The connections in the AND plane are programmable
- The connections in the OR plane are <u>NOT</u> programmable

Example Schematic of a PAL

 $f_{1} = x_{1}x_{2}x_{3}' + x_{1}'x_{2}x_{3}$ $f_{2} = x_{1}'x_{2}' + x_{1}x_{2}x_{3}$

AND plane